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Abstract. In this work we consider the behaviour for large values of p
of the unique positive weak solution up to ∆pu = uq in Ω, u = +∞ on
∂Ω, where q > p − 1. We take q = q(p) and analyze the limit of up as
p →∞. We find that when q(p)/p → Q the behaviour strongly depends
on Q. If 1 < Q < ∞ then solutions converge uniformly in compacts to
a viscosity solution of max{−∆∞u, −|∇u|+ uQ} = 0 with u = +∞ on
∂Ω. If Q = 1 then solutions go to ∞ in the whole Ω and when Q = ∞
solutions converge to 1 uniformly in compact subsets of Ω, hence the
boundary blow-up is lost in the limit.

1. Introduction.

The aim of the present work is the study of the behaviour of positive weak
solutions to the problem

(1.1)
{

∆pu = uq in Ω
u = +∞ on ∂Ω

for large values of p. In fact, we consider the limit as p →∞. Here Ω ⊂ RN

is a bounded C2 domain, ∆pu = div(|∇u|p−2∇u) stands for the p-Laplacian
operator with p > 1 and q > p − 1. The boundary condition is to be
understood as u(x) →∞ as d(x) := dist(x, ∂Ω) → 0.

Problems like (1.1) are usually known in the literature as boundary blow-
up problems, and their solutions are also named “large solutions”. A large
amount of work has been dedicated to study such problems. The special
case p = 2 of (1.1) (or a linear perturbation of it) was considered in [3], [4],
[10], [17], [21], [24], or [28], while the general case, p > 1, was the subject of
[12]. Some more general problems have also been analyzed, when the power
reaction is substituted by a smooth increasing function f(u) (see [5], [22]).
We refer the reader to [16] for a more complete list of references. However,
at the best of our knowledge, the present work seems to be the first one to
deal with large solutions with varying p.

On the other hand, the behaviour of solutions as p → ∞ for problems
related to (1.1) has also been intensively studied in the natural framework
of viscosity solutions. The limit as p → ∞ of solutions to the p−Laplacian
has several applications, for example, in studying Lipschitz extensions, [2],
mass transfer problems, [14], [15], concentration of branches of solutions,
[8], etc. For general references, we refer to [7], [15], [19] or [20], and to the
recent survey [2]. We remark that in these works the boundary condition
was always of Dirichlet type, except in [15], where a nonlinear boundary
condition was imposed. We also quote [11], where a boundary blow-up
problem with the infinity Laplacian operator was considered.
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Returning to problem (1.1), it is well-known that it admits a unique pos-
itive weak solution provided that q > p − 1 (cf. for instance [12]). This
solution will be denoted by up. Since our intention is to analyze the be-
haviour of up as p → ∞, it will follow that q → ∞ as well. Our main
hypothesis will be to assume that q = q(p) is a function of p, while the limit

(1.2) Q = lim
p→∞

q(p)
p

,

exists (and it will then follow that Q ≥ 1). Observe that Q = ∞ is not
excluded. However, we have to point out that our main result, Theorem 1,
still holds with weaker assumptions (see Remark 1 (a) below).

To have an insight into the expected behaviour of up, we briefly consider
problem (1.1) in a one-dimensional situation, namely when Ω = (0,∞) is
the half-line:

(1.3)

{
(|u′|p−2u′)′ = uq in (0,∞),

u(0) = +∞.

The unique solution to (1.3) is explicit, and is given by

up(x) =
(
αp−1

p (αp + 1)(p− 1)
) 1

q−p+1 x−αp

with αp = p/(q − p + 1). It can be seen then that the following conclusions
hold: (i) If Q = 1, then αp → ∞, and so up → ∞ uniformly on compact
subsets of (0,∞); (ii) If 1 < Q < ∞, up → αα0

0 x−α0 , uniformly on compacts
of (0,∞), where α0 = 1/(Q − 1); (iii) If Q = ∞, then up → 1 uniformly in
compact subsets of (0,∞) (since αp → 0).

Our main objective will be to prove that the same features are valid for
problem (1.1) in a smooth bounded domain Ω of RN . As is to be expected,
there is not an explicit expression for the solutions anymore, and thus the
study is not so simple.

Now we proceed with the statement of our results.

Theorem 1. For p > 1, let up be the unique solution to (1.1) with q =
q(p) > p− 1, and assume q(p)/p → Q as p →∞. Then we have:

(1) If Q = 1, then up converges uniformly to +∞ in Ω as p →∞.
(2) If 1 < Q < ∞, then up converges uniformly on compact subsets of Ω

to a viscosity solution u to

(1.4)
{

max{−∆∞u, −|∇u|+ uQ} = 0 in Ω
u = +∞ on ∂Ω,

which verifies u ∈ Cγ(Ω) for every γ ∈ (0, 1). Moreover, u(x) ≤
αα0

0 d(x)−α0 in Ω, and there exists δ > 0 such that

(1.5) u(x) = αα0
0 d(x)−α0 if 0 < d(x) < δ,

with α0 = 1/(Q − 1). Furthermore, u is the only solution to (1.4)
which verifies

(1.6) u(x) ∼ αα0
0 d(x)−α0 as d(x) → 0.

(3) If Q = ∞, then up converges uniformly on compact subsets of Ω
to u = 1. Therefore the limit loses the explosive behaviour on the
boundary.
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Remarks 1. (a) It is worthy of mention that Theorem 1 is still valid even
if a weaker version of (1.2) holds. That is, if pn → ∞ and qn > pn − 1 are
arbitrary sequences such that qn/pn → Q, then the same assertions hold.
We refer to the proofs in Section 4.
(b) It is already known that up ∼ Ap d(x)−αp as d(x) → 0 (cf. [12]), where
αp = p/(q − p + 1) and Ap = [αp−1

p (αp + 1)(p − 1)]1/(q−p+1). Since, in the
case 0 < Q < 1, αp → α0 while Ap → αα0

0 , we deduce from (1.6) that the
behaviour near the boundary of the limit u is the limit of the behaviour near
the boundary of up.
(c) It is a consequence of (2) in Theorem 1 that the function αα0

0 d(x)−α0

is always a solution to (1.4) in a neighbourhood of ∂Ω. However, it is not
expected to be a solution in Ω, since this will deeply depend on the geometric
properties of the domain. In the case when Ω is a ball or an annulus, it is
not hard to show that this is indeed the unique solution (see Remark 2 and
Theorem 2 in Section 2).

To finish the introduction let us briefly describe the ideas and methods
used to prove Theorem 1. The key to deduce all behaviours is to analyze
in detail problem (1.1) in a ball B(x0, R) of RN where solutions are radial,
obtaining the explicit dependence on p of these estimates. Then by means of
comparison arguments we will obtain the desired results in smooth bounded
domains Ω. We stress that in the case 1 < Q < ∞ it is not too hard to pass
to the limit (through subsequences) and obtain a positive viscosity solution
u to (1.4). However, to deduce that the limit as p → ∞ exists, we need
to prove the uniqueness of positive solutions to (1.4) verifying (1.6). This
uniqueness is not a consequence of previous results on viscosity solutions
(see for instance [6], [9], [19], [20] or [15]), and although we are using some
ideas from the general maximum principle in [9], the proof is not straight-
forward. We refer to Section 3 for the details. We mention in passing that
the regularity of the limit u in part (2) of Theorem 1 is not a consequence of
a regularity theory for equations like (1.4). Indeed it is really hard to obtain
general regularity results, as some existing literature shows (see [26]).

The paper is organized as follows: in Section 2, we obtain some prelim-
inary results in the case where Ω is a ball in RN . Section 3 deals with
viscosity solutions, containing in particular the essential uniqueness theo-
rem of solutions to (1.4) verifying the condition (1.6). Finally, Section 4 is
dedicated to the proof of Theorem 1.

2. Preliminaries on radial solutions

In this section we perform a preliminary analysis of problem (1.1) in the
particular case where Ω is a ball of RN , denoted by B(x0, R). With no loss
of generality, we may assume throughout that x0 = 0 (we are not setting
however R = 1). Our intention is to prove the following weaker version of
Theorem 1.

Theorem 2. Let up be the unique positive solution to (1.1) in B(0, R).
Assume q/p → Q when p, q →∞. Then:
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(1) If Q = 1, then for every δ ∈ (0, R), up →∞ uniformly in δ ≤ |x| < R
as p →∞.

(2) If 1 < Q < ∞, then for every δ > 0, up(x) → αα0
0 (R − |x|)−α0

uniformly in δ ≤ |x| ≤ R− δ, where α0 = 1/(Q− 1).
(3) If Q = ∞, then for every δ ∈ (0, R), up → 1 uniformly in δ ≤ |x| ≤

R− δ.

Remark 2. We quote that the function u = αα0
0 (R− |x|)−α0 is a solution to

the equation
max{−∆∞u,−|∇u|+ uQ} = 0

in B(0, R). Indeed, it verifies |∇u| = uQ, ∆∞u > 0 in B(0, R) \ {0} in the
classical sense, and in the center of the ball in the viscosity sense (cf. [20]
for a related situation).

We now remark that, when Ω = B(0, R), the uniqueness and regularity
of up imply that it is radial, that is, up(x) = up(|x|). Hence it is well known
that the solution has to satisfy the ordinary differential equation:

{
(rN−1ϕp(u′))′ = rN−1uq in (0, R)
u′(0) = 0, u(R) = ∞,

where ′ stands for derivative with respect to r = |x|, and ϕp(z) = |z|p−2z.
We begin with two basic lemmas, which provide us with precise estimates of
the solutions in terms of p and q. For their statements, we need to introduce
the function

(2.1) I(p, q) =
∫ ∞

1

dz

(zq+1 − 1)1/p
,

which will play a fundamental role in the proof of Theorem 2. We also
denote by p′ the Hölder conjugate of p, i.e. p′ = p/(p− 1). Then:

Lemma 3. Assume p > N . Then for every δ ∈ (0, R), we have

(2.2) up(x) ≤
(

q + 1
p′

(
R

δ

)(N−1)p′
) 1

q−p+1

I(p, q)
p

q−p+1 (R− |x|)−αp ,

for δ ≤ |x| < R, where αp = p/(q − p + 1).

Proof. We introduce the change of variables

s =
1

1− γ
(R1−γ − r1−γ),

where γ = (N − 1)/(p − 1) < 1. If we denote v(s) = u(r) (the subindex p
will be dropped along this proof to simplify the notation), we find that it
satisfies the non-autonomous one-dimensional problem:

(2.3)
{

ϕp(v′)′ = gp(s)vq in (0, T )
v(0) = ∞, v′(T ) = 0,

where T = R1−γ/(1 − γ) and gp(s) = r(N−1)p′ . We notice that equation
(2.3) implies that v′ < 0 in (0, T ). Thus if we multiply by v′, we arrive at

(2.4) ϕp(v′)′v′ ≤ δ(N−1)p′vqv′ in (0, Tδ)
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for r ≥ δ, where Tδ = (R1−γ − δ1−γ)/(1 − γ). Now let x, y be such that
0 < x < y < Tδ. If we integrate equation (2.4) in the interval (x, y), we
obtain the inequality

|v′(x)|p ≥ p′

q + 1
δ(N−1)p′(v(x)q+1 − v(y)q+1),

where a term |v′(y)|p, which appears after the integration has been dropped.
Since v′ < 0, we obtain after integrating with respect to x in (0, y) that

∫ ∞

v(y)

dτ

(τ q+1 − v(y)q+1)1/p
≥

(
p′

q + 1
δ(N−1)p′

)1/p

y,

provided y ≤ Tδ. Letting τ = v(y)z in the integral, we arrive at

v(y) ≤
(

q + 1
p′

δ−(N−1)p′
) 1

q−p+1

I(p, q)
p

q−p+1 y−αp ,

for y ≤ Tδ. This implies for u

u(x) ≤
(

q + 1
p′

δ−(N−1)p′
) 1

q−p+1

I(p, q)
p

q−p+1

(
1

1− γ
(R1−γ − |x|1−γ)

)−αp

,

whenever δ ≤ |x| < R, and (2.2) follows once we note that R1−γ − |x|1−γ ≥
(1− γ)R−γ(R− |x|). This completes the proof. ¤

With a similar argument as in the proof of Lemma 3, we can also obtain
a lower estimate for the solutions. There is still an alternative way of doing
it, which does not use the radial symmetry of the solution: constructing a
suitable subsolution.

Lemma 4. Assume p > N . Then for every δ ∈ (0, R) we have

(2.5) up(x) ≥ α
αp
p

(
q + 1

p′

(
δ

R

)(N−1)p′
) 1

q−p+1

(R− |x|)−αp

if δ ≤ |x| < R, where αp = p/(q − p + 1).

Proof. We proceed as in Lemma 3. Now notice that, after the change of
variables introduced there, we have for the function v,

(2.6) ϕp(v′)′v′ ≥ R(N−1)p′vqv′ in (0, T ).

Now choose 0 < x < y < T , and integrate (2.6) in the interval (x, T ). We
arrive at

|v′(x)|p ≤ p′

q + 1
R(N−1)p′v(x)q+1,

for 0 < x < y. Taking into account once again that v′ < 0, we obtain after
integrating with respect to x in (0, y) that

v(y) ≥ α
αp
p

(
p′

q + 1
R−(N−1)p′

) 1
q−p+1

y−αp

for 0 < y < T . In the original variable x, this will imply for the function u,

u(x) ≥ α
αp
p

(
q + 1

p′
R−(N−1)p′

) 1
q−p+1

(
1

1− γ
(R1−γ − |x|1−γ)

)−αp

.
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The estimate (2.5) is obtained from R1−γ − |x|1−γ ≤ (1 − γ)δ−γ(R − |x|)
when δ ≤ |x| < R. ¤

Before we can finally proceed with the proof of Theorem 2, we need an-
other property of the function I(p, q) given by (2.1).

Lemma 5. Let I(p, q) be the function defined by (2.1) for p > 1, q > p− 1.
Then if q/p → Q > 1 as p, q →∞ (Q = ∞ is not excluded), we have that

I(p, q)
p

q−p+1 →





(
1

Q− 1

) 1
Q−1

if Q < ∞
1 if Q = ∞.

Proof. Performing the change of variable z = t−1/(q+1) in the integral defin-
ing I(p, q), we obtain that

I(p, q) =
1

q + 1
B

(
1
p
− 1

q + 1
, 1− 1

p

)
,

where B stands for Euler’s Beta function. Thus according to well known
properties of B,

I(p, q) =
1

q + 1
Γ

(
1
p
− 1

q + 1

)
Γ

(
1− 1

p

)
Γ

(
1− 1

q + 1

)−1

,

where Γ is Euler’s Gamma function (see for instance [23]). Thus for p, q →∞
we have

I(p, q)
p

q−p+1 ∼
(

1
q + 1

Γ
(

1
p
− 1

q + 1

)) p
q−p+1

.

Now we use that the Gamma function admits an analytic continuation as a
meromorphic function in C, with simple poles at z = −n, n = 0, 1, ..., with
corresponding residues (−1)n/n!. In particular, zΓ(z) → 1 when z → 0,
z ∈ C (see Section 1.1 in [23]). This automatically implies that

I(p, q)
p

q−p+1 ∼
(

p

q − p + 1

) p
q−p+1

,

and the conclusion of the lemma follows easily. ¤

Now we prove Theorem 2.

Proof of Theorem 2. The proof follows by combining estimates (2.2) and
(2.5) with Lemma 5 and the evaluation of some limits.
Part 1 (Q = 1). It follows from Lemma 4 that for |x| ≥ δ:

up(x) ≥ α
αp
p

(
q + 1

p′

(
δ

R

)(N−1)p′
) 1

q−p+1

(R− δ)−αp .

Since for sufficiently large p the term between the big brackets is greater
than one, we have that

up(x) ≥
(

αp

R− δ

)αp

,

which implies that up →∞ uniformly in δ ≤ |x| < R.
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Part 2 (1 < Q < ∞). Thanks to (2.2), for every δ > 0, we have

(2.7) up(x) ≤
(

q + 1
p′

(
R

δ

)(N−1)p′
) 1

q−p+1

I(p, q)
p

q−p+1 (R− |x|)−αp ,

provided that δ ≤ |x| < R. Notice that the term between the big brackets
converges to 1, while I(p, q)

p
q−p+1 → αα0

0 , thanks to Lemma 5. Since αp →
α0, we arrive at

lim sup
p→∞

up(x) ≤ αα0
0 (R− |x|)−α0 .

On the other hand, the lower estimate provided by Lemma 4 reads as:

up(x) ≥ α
αp
p

(
q + 1

p′

(
δ

R

)(N−1)p′
) 1

q−p+1

(R− |x|)−αp ,

and since the term between the big brackets also converges to 1, we obtain
the desired lower limit:

lim inf
p→∞ up(x) ≥ αα0

0 (R− |x|)−α0 .

Finally, it is clear from the estimates that the convergence is uniform in
subsets of the form δ ≤ |x| ≤ R− δ.

Part 3 (Q = ∞). We first observe that in this case αp → 0. Choose
δ ∈ (0, R); thanks to Lemma 3, we have

(2.8) up(x) ≤
(

q + 1
p′

(
R

δ

)(N−1)p′
) 1

q−p+1

I(p, q)
p

q−p+1 δ−αp ,

for δ ≤ |x| ≤ R − δ. If we now let p → ∞ in (2.8) and use Lemma 5, we
obtain

(2.9) lim sup
p→∞

up(x) ≤ 1

uniformly for δ ≤ |x| ≤ R− δ.
On the other hand, thanks to Lemma 4, we have for |x| ≥ δ that

up(x) ≥ α
αp
p

(
q + 1

p′

(
δ

R

)(N−1)p′
) 1

q−p+1

R−αp .

We only need to let p →∞ to arrive at

lim inf
p→∞ up(x) ≥ 1

uniformly for |x| ≥ δ, which, together with (2.9) proves the theorem. ¤
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3. Some remarks on viscosity solutions.

Since our intention is letting p →∞ in (1.1), the concept of weak solution
is not an appropriate one. In fact, the underlying space for weak solutions
is W 1,p

loc (Ω), which varies with p. Thus we will rather use the concept of
viscosity solution. We begin by recalling a standard definition (see [9]). In
what follows, we denote by S (N) the space of N ×N symmetric matrices,
and by D2u the Hessian Matrix of u.

Definition 6. Let F : R × RN × S(N) → R be a given function. A lower
(resp. upper) semi-continuous function u is a viscosity supersolution (resp.
subsolution) to

(3.1) F (u,∇u,D2u) = 0 in Ω

if for every φ ∈ C2(Ω) such that u − φ has a strict minimum (resp. maxi-
mum) at the point x0 ∈ Ω with u(x0) = φ(x0) we have:

F (φ(x0),∇φ(x0), D2φ(x0)) ≥ 0 (resp. ≤ 0).

Finally, u is a viscosity solution if it is both a viscosity supersolution and a
viscosity subsolution.

We remark that it is not necessary to require that the minimum (resp.
maximum) in this definition is strict. An equivalent definition is obtained
when the word “strict” is dropped.

Before proceeding further, we need to check that the unique weak solution
up to (1.1) is indeed a viscosity solution. Thus, in the light of Definition 6,
we say that an upper semi-continuous function u is a viscosity supersolution
to (1.1) if, for every φ ∈ C2(Ω) such that u − φ has a strict minimum at
x0 ∈ Ω with u(x0) = φ(x0), we have

∆pφ(x0) = (p− 2)|∇φ|p−4∆∞φ(x0) + |∇φ|p−2∆φ(x0) ≤ φq(x0)

(to avoid complications, and since we are interested in large p, we may always
assume p > 2). Here ∆∞u represents the ∞-Laplacian operator, given by
∆∞u = ∇uD2u∇uT .

We have the following result. Although the proof follows by similar ar-
guments as those in Lemma 2.3 of [15] or Lemma 1.8 in [20], we include it
here for completeness.

Lemma 7. Let up be the unique weak solution to (1.1) for p > 2. Then up

is a viscosity solution of

(3.2)
{

∆pu = uq in Ω
u = ∞ on ∂Ω.

Proof. We first recall that, according to interior regularity for the p-Laplace
equation, up ∈ C1,α

loc (Ω) (see [13] and [27]). In particular, u is continuous in
Ω. We are only showing that up is a viscosity supersolution, since the proof
that it is a viscosity subsolution is entirely similar. For the sake of brevity
we are dropping the subindex p in what follows.

Assume u is not a viscosity supersolution. Then there exist a point x0 ∈ Ω
and a function φ ∈ C2(Ω) such that u− φ has a strict minimum at x0 with
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u(x0) = φ(x0), but ∆pφ(x0) > φq(x0). Since u(x0) = φ(x0), thanks to
continuity there exists r > 0 so that for x in the ball B(x0, r) we have

(3.3) ∆pφ(x) > uq(x).

Now set m = inf |x−x0|=r(u − φ). By diminishing r if necessary, and since
x0 is a minimum for u − φ, we have m > 0. Let ψ(x) = φ(x) + m/2. It is
then clear that the function (ψ − u)+ belongs to W 1,p

0 (B(x0, r)), and it is
nontrivial since ψ(x0) = u(x0) + m/2 > u(x0). Thus if we multiply (3.3) by
(ψ − u)+ and integrate in B(x0, r), we arrive at

(3.4)
∫

{ψ>u}∩B(x0,r)
|∇ψ|p−2∇ψ∇(ψ − u) < −

∫

{ψ>u}∩B(x0,r)
(ψ − u)uq.

On the other hand, if we take (ψ−u)+ (extended to be zero outside B(x0, r))
as a test function in the weak formulation of (1.1), we get

(3.5)
∫

{ψ>u}∩B(x0,r)
|∇u|p−2∇u∇(ψ − u) = −

∫

{ψ>u}∩B(x0,r)
(ψ − u)uq

Hence, subtracting (3.4) and (3.5) and using the monotonicity of the p-
Laplacian for p > 2 (Lemma 1 in [27]):

C(N, p)
∫

{ψ>u}∩B(x0,r)
|∇ψ −∇u|p

≤
∫

{ψ>u}∩B(x0,r)
(|∇ψ|p−2∇ψ − |∇u|p−2∇u)∇(ψ − u) < 0,

for a positive constant C(N, p), a contradiction. This shows that u is a
viscosity supersolution, and concludes the proof of the lemma. ¤

Now we consider the expected limit problem as p → ∞ of the solutions
up (at least in the case 1 < Q < ∞), namely

(1.4)
{

max{−∆∞u, −|∇u|+ uQ} = 0 in Ω
u = +∞ on ∂Ω,

where Q > 1. This problem admits a unique viscosity solution u with the
boundary behaviour given by (1.6). This will be of particular interest in the
proof of Theorem 1. Our intention is to apply the general results in [9], but
we remark that the comparison principle there (Theorem 3.3) is not directly
applicable since the equation in (1.4) does not satisfy their condition (3.13);
that is, if G∞ denotes the left-hand side of (1.4) then there does not exist a
positive constant γ so that

G∞(z, ξ,X)−G∞(w, ξ,X) ≥ γ(z − w)

whenever z ≥ w, ξ ∈ RN , X ∈ S(N) (we point out that G∞ is not even
strictly increasing in the variable z). Thus we proceed differently and, fol-
lowing [20], we perform a change of variables in our equation.

Lemma 8. Let u be a continuous positive viscosity solution to (1.4). Then
v = u1/2 is a positive viscosity solution to

(3.6)





max
{
−∆∞v − |∇v|4

v
, −2|∇v|+ v2Q−1

}
= 0 in Ω

v = +∞ on ∂Ω.
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Proof. We only prove that v is a viscosity subsolution, the proof that it is a
supersolution being similar (of course the boundary condition still holds for
v). Let x0 ∈ Ω and φ ∈ C2(Ω) such that v − φ has a strict maximum at x0,
with v(x0) = φ(x0). Then φ2 is a valid test function in (1.4) (u−φ2 attains
a maximum at x0), and we deduce that

max{−∆∞φ2(x0),−|∇φ2(x0)|+ φ2Q(x0)} ≤ 0.

After some manipulations, we see that this leads to

max{−8φ3∆∞φ(x0)− 8φ2|∇φ(x0)|4,−2φ(x0)|∇φ(x0)|+ φ(x0)2Q} ≤ 0,

which implies, as φ(x0) = u(x0)1/2 > 0, that v is a subsolution of (3.6). ¤

We are next showing that, if v is a viscosity supersolution to (3.6), then
(1 + ε)v + ε is a strict viscosity supersolution, in the sense that for every
x0 ∈ Ω and φ ∈ C2(Ω) such that (1 + ε)v + ε − φ has a strict minimum at
x0 with (1 + ε)v(x0) + ε = φ(x0), then

max
{
−∆∞φ(x0)− |∇φ(x0)|4

φ(x0)
, −2|∇φ(x0)|+ φ(x0)2Q−1

}
> 0.

This will be essential in order to apply the general results in [9].

Lemma 9. Let v ∈ C(Ω) be a continuous, positive viscosity supersolution to
(3.6). Then for every ε > 0, (1 + ε)v + ε is a strict viscosity supersolution.

Proof. Let x0 ∈ Ω and φ ∈ C2(Ω) such that (1 + ε)v + ε − φ has a strict
minimum at x0 with (1 + ε)v(x0) + ε = φ(x0). Then (φ − ε)/(1 + ε) is a
valid test function in (3.6), and we have

max
{
−∆∞φ(x0)− |∇φ(x0)|4

φ(x0)− ε
,

−2|∇φ(x0)|+
(

1
1 + ε

)2(Q−1)

(φ(x0)− ε)2Q−1

}
≥ 0.

Assume first that

(3.7) −2|∇φ(x0)|+
(

1
1 + ε

)2(Q−1)

(φ(x0)− ε)2Q−1 ≥ 0.

Then we get

−2|∇φ(x0)|+φ(x0)2Q−1 ≥ φ(x0)2Q−1−
(

1
1 + ε

)2(Q−1)

(φ(x0)− ε)2Q−1 > 0.

If, on the contrary, (3.7) does not hold, then

−∆∞φ(x0)− |∇φ(x0)|4
φ(x0)− ε

≥ 0,

and |∇φ(x0)| > 0, thanks to the reversed inequality in (3.7). This implies

−∆∞φ(x0)− |∇φ(x0)|4
φ(x0)

≥ |∇φ(x0)|4
φ(x0)− ε

− |∇φ(x0)|4
φ(x0)

> 0,

as was to be proved. ¤
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Remark 3. It is not hard to show that Lemma 9 does not necessarily hold for
the original problem (1.4). That is, (1 + ε)v + ε is a supersolution whenever
v is, but it need not be strict.

We finally prove that we can take advantage of the general framework of
Section 3 in [9] to prove uniqueness of solutions to problem (1.4). To this
end, we denote for z ∈ R+, ξ ∈ RN , X ∈ S (N)

(3.8) F∞(z, ξ,X) = max
{
−ξXξT − |ξ|4

z
, −2|ξ|+ z2Q−1

}
.

Hence, (3.6) reads as F∞(u,∇u, D2u) = 0. We remark that this equation is
proper (or degenerate elliptic) in the terminology of [9]. In fact, it verifies

F∞(z, ξ,X) ≥ F∞(z, ξ, Y ),

whenever X ≤ Y (i.e. Y −X is semidefinite positive) and

F∞(z, ξ, X) ≤ F∞(w, ξ,X),

whenever z ≤ w. Under these conditions, we have the following important
theorem.

Theorem 10. Let u1, u2 ∈ C(Ω) be strictly positive viscosity solutions to
(1.4), with

lim
d(x)→0

u1(x)
u2(x)

= 1.

Then u1 = u2 in Ω.

Proof. Observe that it suffices to prove that if v1 and v2 are positive viscosity
solutions to (3.6) with v1/v2 → 1 as d(x) → 0 then v1 = v2. For this sake,
we adapt an argument in [17].

Choose ε > 0. Then there exists δ > 0 such that v1 ≤ (1 + ε)v2 <
(1 + ε)v2 + ε in Ω \ Ωδ, where Ωδ = {x ∈ Ω : d(x) > δ}. Thanks to
Lemma 9, (1 + ε)v2 + ε is a strict viscosity supersolution to (3.6) in Ωδ. We
claim that v1 ≤ (1 + ε)v2 + ε in Ωδ. Indeed, assume on the contrary that
v1(z) > (1+ε)v2+ε(z) for some z ∈ Ωδ. For σ > 0, we consider the function

vσ(x, y) = v1(x)− (1 + ε)v2(y)− ε− σ

2
|x− y|2,

defined in Ωδ × Ωδ. It follows that there exist points (xσ, yσ) ∈ Ωδ × Ωδ

such that the function vσ attains its maximum in Ωδ ×Ωδ at (xσ, yσ). For a
sequence σn →∞, we may assume that xσn → x0 ∈ Ωδ. Thanks to Lemma
3.1 in [9], x0 is a maximum point of v1 − (1 + ε)v2 − ε, and yσn → x0. We
now apply Theorem 3.2 in [9] (see also the discussion after it) to obtain two
functions φ, ψ ∈ C2(Ω) such that v1−φ has a maximum at xσn , ∇φ(xσn) =
σn(xσn −yσn), D2φ(xσn) = Xσn and (1+ ε)v2 + ε−ψ has a minimum at yσn

with ∇ψ(yσn) = σn(xσn − yσn), D2ψ(yσn) = Yσn . Moreover, the matrices
Xσn , Yσn ∈ S (N) verify Xσn ≤ Yσn . Thanks to the monotonicity properties
of F∞ quoted before and the fact that v1 is a viscosity subsolution while
(1 + ε)v2 + ε is a strict viscosity supersolution, we arrive at

0 ≥ F∞(v1(xσn), σn(xσn − yσn), Xσn)

≥ F∞((1 + ε)v2(yσn + ε), σn(xσn − yσn), Yσn) > 0,



12 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

a contradiction.
Thus we have shown that v1 ≤ (1 + ε)v2 + ε in Ωδ. Taking into account

the way δ was selected, we have v1 ≤ (1 + ε)v2 + ε in Ω. Letting ε → 0, we
obtain v1 ≤ v2, and the symmetric argument proves v1 = v2. ¤

4. Proof of Theorem 1.

We are dedicating this section to the proof of Theorem 1. To clarify the
exposition, we divide the proof in several lemmas. We begin by considering
the simpler cases where Q = 1 or Q = ∞. The key of the proofs is to
compare the solutions with suitable radial solutions, which have been studied
in Section 2.

Lemma 11. Assume Q = 1, then up →∞ uniformly in Ω as p →∞.

Proof. Assume with no loss of generality that 0 /∈ Ω. Choose R > 0 such
that Ω ⊂⊂ B(0, R), and consider problem (1.1) in B(0, R):

(4.1)
{

∆pu = uq in B(0, R)
u = +∞ on ∂B(0, R).

Let up,B be the unique solution to (4.1). As up,B is finite on ∂Ω, we get by
comparison that

(4.2) up(x) ≥ up,B(x) x ∈ Ω.

We now choose δ > 0 so that Ω ⊂ B(0, R)\B(0, δ). According to Theorem 2,
part 1, we have that up,B →∞ uniformly in compacts of B(0, R) \ B(0, δ),
and thus (4.2) implies that up → ∞ uniformly in Ω. This concludes the
proof. ¤
Lemma 12. Assume Q = ∞, then up converges uniformly on compact
subsets of Ω to u = 1.

Proof. First, observe that the comparison (4.2) in the proof of Lemma 11
remains valid, where up,B is the unique solution to (4.1), and R, δ are chosen
to have Ω ⊂ B(0, R) \B(0, δ). Hence, thanks to Theorem 2, part 3, we get

lim inf
p→∞ up(x) ≥ 1

uniformly in Ω.
To prove the complementary upper estimate, let K ⊂ Ω be a compact

set. Then there exist points x1, . . . , xm and positive numbers R1, . . . , Rm

such that

K ⊂
m⋃

j=1

(
B(xj , 2Rj) \B(xj , Rj)

)
,

while B(xj , 3Rj) ⊂ Ω. For every j, 1 ≤ j ≤ m, consider the auxiliary
problem

(4.3)
{

∆pu = uq in B(xj , 3Rj)
u = +∞ on ∂B(xj , 3Rj),

which has a unique positive solution up,j . Since up is finite on ∂B(xj , 3Rj), it
follows by comparison that up ≤ up,j in B(xj , 3Rj). According to Theorem
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2, part 3, we have up,j → 1 as p →∞, uniformly in B(xj , 2Rj) \B(xj , Rj).
Then, it is easy to deduce that

lim sup
p→∞

up(x) ≤ 1,

uniformly in K. This completes the proof. ¤
We finally consider the more difficult – and of course more interesting –

case in which 1 < Q < ∞. We begin by showing that we can indeed pass to
the limit as p →∞.

Lemma 13. Assume 1 < Q < ∞. Then for every sequence pn →∞, there
exists a subsequence (still denoted by {pn}) and a strictly positive function
u ∈ Cγ(Ω) for every γ ∈ (0, 1), such that upn → u uniformly on compacts
of Ω. Moreover:

(4.4) u(x) ≤ αα0
0 d(x)−α0

in Ω, where α0 = 1/(Q− 1).

Proof. We begin by noting that the proof of the upper estimate in Lemma 12
is still valid now, and thus, for every compact K, we obtain thanks to
Theorem 2, part 2 (we follow the notation of Lemma 12):

lim sup
p→∞

up(x) ≤ αα0
0 (3Rj − |x− xj |)−α0 , for x ∈ B(xj , 2Rj) \B(xj , Rj).

This in particular shows that the sequence up is uniformly bounded in K.
We are next showing that it is possible to obtain W 1,p

loc (Ω) bounds for
the solutions up, independently of p. We remark that the usual strategies
(cf. for instance [15]) cannot be employed since up 6∈ W 1,p(Ω). Thus let
Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω be smooth subdomains, and choose φ ∈ C∞

0 (Ω′′) such that
φ ≥ 0 and φ > M in Ω′, where M is an upper bound for up in Ω′′. If we take
as a test function in the weak formulation of (1.1) the function (φ − up)+

(notice that (φ− up)+ ∈ W 1,p
0 (Ω′′)), we obtain:

(4.5)∫

φ>up

|∇up|p =
∫

φ>up

|∇up|p−2∇up∇φ +
∫

φ>up

uq
p(φ− up)

≤
(∫

φ>up

|∇up|p
)1/p′

|Ω′′|1/p sup |∇φ|+ M q|Ω′′| supφ,

where we have used Hölder’s inequality. Set

Ap =

(∫

φ>up

|∇up|p
)1/p

,

and assume (passing to a subsequence if necessary) that Ap → ∞. Then,
according to (4.5), we have for some positive constants C1 and C2:

Ap
p ≤ C1A

p−1
p + C2M

q.

Dividing by Ap−1
p , we obtain Ap ≤ C1 + C2M

qA
−(p−1)
p , which implies that

M qA
−(p−1)
p → ∞. This is impossible, since it can be easily checked that

M qA
−(p−1)
p = (M q/(p−1)A−1

p )p−1 → 0.
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Thus there exists a positive constant C such that Ap ≤ C, which implies
(∫

Ω′
|∇up|p

)1/p

≤
(∫

φ>up

|∇up|p
)1/p

≤ C,

where we have used that Ω′ ⊂ {φ > up}. We now observe that, if we fix
m > N and take p > m, we have,

(∫

Ω′
|∇up|m

)1/m

≤ |Ω′| 1
m
− 1

p

(∫

Ω′
|∇up|p

)1/p

≤ C.

Thanks to the Morrey embedding, we may assert that there exists a positive
constant (independent of p) such that (cf. [1], [18]):

(4.6) |up(x)− up(y)| ≤ C|x− y|1−N
m x, y ∈ Ω′.

Thus, according to Ascoli-Arzelá theorem, for every sequence pn → ∞,
there exists a subsequence (denoted again {pn}) and a function u such that
upn → u uniformly in Ω′. By a standard diagonal procedure, and after a
repeated choice of subsequences, we can obtain a function u ∈ C(Ω) such
that upn → u uniformly on compacts of Ω. Passing to the limit in (4.6)
we obtain that u ∈ CN/m(Ω), and since m > N is arbitrary, we get that
u ∈ Cγ(Ω) for every γ ∈ (0, 1).

Now we prove inequality (4.4). Fix x ∈ Ω. Notice that B(x, d(x)) ⊂ Ω.
Thus, by comparison we arrive at

(4.7) upn(y) ≤ upn,B(y) when y ∈ B(x, d(x)),

where upn,B is the unique solution to (1.1) in B(x, d(x)) with p = pn. For
δ ∈ (0, d(x)) fixed, and thanks to Theorem 2, part 2, we can pass to the
limit in (4.7) to arrive at

u(y) ≤ αα0
0 (d(x)− |y − x|)−α0

provided δ ≤ |y − x| ≤ d(x) − δ. Thanks to the continuity of u, we can let
δ → 0 and y → x, to obtain (4.4).

To finish the proof, we show that u is strictly positive in Ω. Observe that
the comparison (4.2) in the proof of Lemma 11 remains valid, where up,B

is the unique solution to (4.1), and R, δ are chosen to have Ω ⊂ B(0, R) \
B(0, δ). Hence, we may apply Theorem 2, part 2, to obtain that

u(x) ≥ αα0
0 (R− |x|)−α0 ,

which shows that u is a strictly positive function. ¤
We finally proceed with the proof of part 2 in Theorem 1. We state it

once again for the reader’s convenience.

Lemma 14. Assume 1 < Q < ∞. Then up converges uniformly on compact
subsets of Ω to a strictly positive viscosity solution u to

(1.4)
{

max{−∆∞u, −|∇u|+ uQ} = 0 in Ω
u = +∞ on ∂Ω.

Moreover, if α0 = 1/(Q− 1), then u(x) ≤ αα0
0 d(x)−α0 in Ω, and there exists

δ > 0 such that

(4.8) u(x) = αα0
0 d(x)−α0 in 0 < d(x) < δ.
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Furthermore, u(x) is the only positive solution to (1.4) which verifies

(4.9) u(x) ∼ αα0
0 d(x)−α0 as d(x) → 0.

Proof. Thanks to Lemma 13, for every sequence pn → ∞, we obtain a
subsequence and a strictly positive function u ∈ C(Ω) such that upn → u
uniformly on compacts of Ω. Moreover, u ≤ αα0

0 d(x)−α0 in Ω.
We now claim that the limit u is a viscosity solution of (1.4) (cf. [19] for

a similar procedure). To prove this, let φ ∈ C2(Ω), and assume that u − φ
has a strict local maximum at x0 ∈ Ω with u(x0) = φ(x0). We have to check
that

(4.10) max{−∆∞φ(x0), −|∇φ(x0)|+ φQ(x0)} ≤ 0.

As upn converges uniformly to u, each function upn−φ has a local maximum
at a point xn, and xn → x0 while upn(xn) = φ(xn) + kn with kn → 0.

Thanks to Lemma 7, upn is a viscosity solution to (3.2), and hence

(4.11) −(pn − 2)|∇φ|pn−4∆∞φ(xn)− |∇φ|pn−2∆φ(xn) ≤ −(φ(xn) + kn)qn .

Notice that the right-hand side of (4.11) is equal to −upn(xn)qn < 0, and
thus ∇φ(xn) 6= 0 for every n. Thus we can simplify in (4.11) to obtain

−∆∞φ(xn)− 1
pn − 2

|∇φ|2∆φ(xn) ≤ − 1
pn − 2

[
(φ + kn)qn/(pn−4)

|∇φ| (xn)

]pn−4

.

As

(4.12)
(φ + kn)qn/(pn−4)

|∇φ| (xn) → φQ

|∇φ|(x0)

we arrive at

(4.13)
φQ

|∇φ|(x0) ≤ 1.

Now, we can pass to the limit and get

(4.14) −∆∞φ(x0) ≤ 0.

Inequalities (4.13) and (4.14) give (4.10). This proves that u is a viscosity
subsolution.

Now let us check that u is a viscosity supersolution. Notice that the special
form of equation (1.4) shows that the argument is not entirely symmetric.
Thus let φ ∈ C2(Ω) and assume that u − φ has a strict local minimum at
x0 with u(x0) = φ(x0). We have to check that

(4.15) max{−∆∞φ(x0), −|∇φ(x0)|+ φQ(x0)} ≥ 0.

Since upn converges uniformly to u, upn −φ has a local minimum at a point
xn with xn → x0 and upn(xn) = φ(xn) + kn with kn → 0.

If ∇φ(x0) = 0, then (4.15) is automatically satisfied. If ∇φ(x0) 6= 0 then
∇φ(xn) 6= 0 for large n, and we can proceed as before and arrive at

−∆∞φ(xn)− 1
pn − 2

|∇φ|2∆φ(xn) ≥ − 1
pn − 2

[
(φ + kn)qn/(pn−4)

|∇φ| (xn)

]pn−4

.
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Therefore, if φQ(x0) < |∇φ(x0)|, we would have thanks to (4.12) that
−∆∞φ(x0) ≥ 0. This proves (4.15), and shows that u is indeed a viscosity
solution to (1.4).

To show that the convergence is not merely through subsequences, we are
next proving (4.9). We only need to check that

(4.16) lim inf
d(x)→0

d(x)α0u(x) ≥ αα0
0 ,

since the reversed inequality is a direct consequence of (4.4) in Lemma 13.
To this aim, we are constructing a global subsolution to (1.1).

Choose ε ∈ (0, 1), and δ > 0 small enough so that the function d(x) is C2

in 0 < d(x) < δ, while |∇d| = 1 there (cf. [18]). We begin by proving that,
for d(x) < 2δ, the function

u(x) = (1− ε)
1

q−p+1 Apd(x)−αp ,

where Ap = (αp−1
p (αp + 1)(p− 1))

1
q−p+1 , is a subsolution provided that p is

large enough (in the rest of the proof we are removing the subindex p in αp

and Ap for brevity). Indeed, it is not hard to see that

∆pu− uq = (1− ε)
p−1

q−p+1 Ap−1d−(α+1)(p−1)−1×
(
αp−1(α + 1)(p− 1)− αp−1d∆d− (1− ε)Aq−p+1

)
.

Thus thanks to the definition of A, and since d∆d is bounded in d(x) ≤ 2δ,
we obtain that u is a subsolution for p ≥ p0 (where p0 depends on δ and ε),
provided d(x) < 2δ.

At this point, it is not difficult to see that the function

ũ(x) = max{u− C, 0}
is also a subsolution for every C > 0, which is defined in Ω. If we choose
C = (1 − ε)

1
q−p+1 Aδ−α, we have ũ(x) = 0 for d(x) ≥ δ. Hence we can use

the comparison principle once again to deduce that up(x) ≥ ũ(x) in Ω, for
p ≥ p0.

In particular, letting p = pn and passing to the limit, we arrive at

u(x) ≥ αα0
0 (d(x)−α0 − δ−α0) for d(x) < δ.

This implies (4.16), and thus (4.8).
We now remark that (1.4) admits a unique solution verifying (4.8), thanks

to Theorem 10. Thus, since for every sequence pn →∞ the limit of upn will
be this solution, we deduce that up → u as p →∞.

We finally prove (4.9), that is, u = αα0
0 d(x)−α0 in a neighbourhood of

∂Ω. Thanks to (4.4), we only need to check that u(x) ≥ αα0
0 d(x)−α0 in a

neighbourhood of ∂Ω.
Let x0 ∈ ∂Ω and choose an annulus A = {x ∈ RN : R1 < |x− x̃0| < R2}

such that Ω ⊂ A and A is tangent to ∂Ω at x0 (in particular x̃0 = x0 +
R1ν(x0), where ν(x0) is the outward unit normal at x0, so that |x0 − x̃0| =
R1). Let up,A be the unique solution to

{
∆pu = uq in A
u = +∞ on ∂A.
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It follows by comparison that up ≥ up,A in Ω. Hence, passing to the limit we
arrive at u ≥ uA in Ω, where uA is the unique solution to (1.4) in A. However,
thanks to Remark 1 (c) and uniqueness, we get that uA = αα0

0 dA(x)−α0 ,
where dA(x) = dist(x, ∂A). Since dA(x) = d(x) for points of the form
x0 − tν(x0) and small positive t, we have shown that u(x) ≥ αα0

0 d(x) if
x = x0 − tν(x0) for small positive t. A compactness argument shows that
there exists a positive δ so that u(x) ≥ αα0

0 d(x)−α0 if 0 < d(x) < δ. This
completes the proof. ¤
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